Page No. 1/4 FC-PF-232

PESTICIDE FORMULATION & RESIDUE ANALYTICAL CENTRE, PMD, NIPHM, HYDERABAD

Sr. No. in Scope

Flow chart for analysis of D-Trans Allethrin and Piperonyl butoxide content in aerosol sample

			Date of Analysis	
SI. No.	Step		Execution	Executed By
1.	Sample	e No.		
2.	Name (of Sample		
3.	Proced	dure		
		timation of premix & aerosol quantity		
	3.1.1	Weight of the container along with aerosol (W_1)	g	
	3.1.2	Keep the container in deep freezer overnight		
	3.1.3	Puncture the container near neck using sharp nail & allow propellant (LPG) to escape for 2 hours. Sonicate for 10 min & record the weight (W ₂)	g	
	3.1.4	De-cramp the container and transfer the premix in a clean and dry stopper reagent bottle		
	3.1.5	Wash the container with acetone thoroughly and dry it. Record the weight of the empty container (W_3)	g	
	3.1.6	Weight of LPG $(W_4) = (W_1 - W_2)$	g	
	3.1.7	Weight of Aerosol $(W_5) = (W_1 - W_3)$	g	
	3.1.8	Weight of premix $(W_6) = (W_5 - W_4)$	g	
	3.2 Pi	reparation of internal standard solution		
	3.2.1	Weight of the Di-butyl phthalate taken into a 25 ml volumetric flask	g	
	3.2.2	Dissolve in acetone and dilute up to the mark with the same solvent		
		reparation of D- Trans allethrin standard solution		
	3.3.1	Weight of the D-Trans allethrin taken into 25 ml volumetric flask	g	
	3.3.2	Purity of D- Trans allethrin standard	%	
	3.3.3	Dissolve in acetone and dilute up to the mark with the same solvent		
		reparation of working standard solution	1	1
	3.4.1	Weight of piperonyl butoxide (PBO) taken in 10 ml volumetric flask	g	
	3.4.2	Purity of piperonyl butoxide (PBO)	%	
	3.4.3	Add D-Trans allethrin standard solution (3.3.2)	ml	
	3.4.4	Add internal standard solution (3.2.2)	ml	

Name of the Laboratory: Pesticide Formulation & Residue Analytical Centre, PMD, NIPHM, Hyderabad								
Document No.	:	FC-PF-232		Document Name		Flow chart for analysis of D-trans allethrin a piperony butoxide content, % by mass	nd	
Revision No.	:	00		Issue Date	:	05.10.2012		
Revision Date	:	05.10.2014		Next Revision Date	:	05.10.2016		
Prepared By			Checked By			Approved & Issued By	Approved & Issued By	
Ms. M. Jaya Devi (Deputy Technical Manager)				Mr. C.V. Rao (Technical Manager)		Dr. Abhay Ekbote (Director PM & Quality Manager)		

PESTICIDE FORMULATION & RESIDUE ANALYTICAL CENTRE, PMD, NIPHM, HYDERABAD

3.4.5	Dissolve in acetone and dilute up to the mark with the		
		g	
3.5.2			
4.1 Co			
4.1.1			
	chromosorb WHP (80 - 100) mesh		
	Length: 1.8 m		
4.1.3	I.D.: 1/8"		
4.2 Ga	S		
4.2.1	Carrier: Nitrogen: 30 ml/min		
4.2.2	Hydrogen: 45 ml/min		
4.2.3	Air: 450 ml/min		
4.3 Te			
4.3.1			
	@ 15°C/min to 230°C hold for 7 min		
	@ 20°C/min to 250°C hold for 3 min		
4.3.2			
4.6 At	tenuation: -2		
Sample	e chromatogram no.		
Standa	rd chromatogram no.		
	3.5 Pi 3.5.1 3.5.2 GC Pa 4.1 Co 4.1.1 4.1.2 4.1.3 4.2 Ga 4.2.1 4.2.2 4.2.3 4.3.1 4.3.1 4.3.2 4.3.3 4.4 In 4.5 Ra 4.6 At Result Sample	Same solvent 3.5 Preparation of Sample solution 3.5.1 Weight of the sample taken into 25 ml volumetric flask 3.5.2 Dissolve in acetone and dilute up to the mark with the same solvent	Same solvent 3.5 Preparation of Sample solution 3.5.1 Weight of the sample taken into 25 ml volumetric flask g 3.5.2 Dissolve in acetone and dilute up to the mark with the same solvent GC Parameters 4.1 Column 4.1.1 Stainless steel column, packed with 5% OV-1 on chromosorb WHP (80 - 100) mesh 4.1.2 Length: 1.8 m 4.1.3 I.D.: 1/8" 4.2 Gas 4.2.1 Carrier: Nitrogen: 30 ml/min 4.2.2 Hydrogen: 45 ml/min 4.2.3 Air: 450 ml/min 4.3.1 Oven: 180°C for 5 min @ 15°C/min to 230°C hold for 7 min @ 20°C/min to 250°C hold for 3 min 4.3.2 Injecter: 250°C 4.3.3 Detector: 260°C 4.4 Injection volume: 2 µl 4.5 Range: 1 4.6 Attenuation: -2 Results Sample chromatogram no.

6. Calculation:

i) For D-Trans Allethrin

Name of the Laboratory: Pesticide Formulation & Residue Analytical Centre, PMD, NIPHM, Hyderabad							
Document No.	:	FC-PF-232		Document Name	:	Flow chart for analysis of D-trans allethrin a piperony butoxide content, % by mass	
Revision No.	:	00		Issue Date	:	05.10.2012	
Revision Date	:	05.10.2014		Next Revision Date	:	05.10.2016	
Prepared By			Checked By			Approved & Issued By	
Ms. M. Jaya Devi (Deputy Technical Manager)				Mr. C.V. Rao (Technical Manager)		Dr. Abhay Ekbote (Director PM & Ouality Manager)	

PESTICIDE FORMULATION & RESIDUE ANALYTICAL CENTRE, PMD, NIPHM, HYDERABAD

Sample no

Where,

A₂ = Peak area of D-trans allethrin in the sample solution
 A₄ = Peak area of internal standard in the sample solution
 A₃ = Peak area of internal standard in the standard solution
 A₁ = Peak area of D-trans allethrin in the standard solution

M₁ = Mass in 'g' of D-trans allethrin standard M₂ = Mass in 'g' of sample (premix) taken for test

df = dilution factor (1/5)

P = Percent purity of D-trans allethrin standard

ii) For Pipernoyl butoxide (PBO)

Pipernoyl butoxide (PBO) content in premix, % by mass =
$$A_2 \times A_3 \times M_1$$

 $A_4 \times A_1 \times M_2$

Name of the Laboratory : Pesticide Formulation & Residue Analytical Centre, PMD, NIPHM, Hyderabad							
Document No.	:	FC-PF-232		Document Name	:	Flow chart for analysis of D-trans allethrin a piperony butoxide content, % by mass	
Revision No.	:	00		Issue Date	:	05.10.2012	
Revision Date	:	05.10.2014 Next Revision Date :		05.10.2016			
Prepared By				Checked By		Approved & Issued By	
Ms. M. (Deputy Techn	•			Mr. C.V. Rao (Technical Manager)		Dr. Abhay Ekbote (Director PM & Quality Manager)	

Page No. 4/4 FC-PF-232

PESTICIDE FORMULATION & RESIDUE ANALYTICAL CENTRE, PMD, NIPHM, HYDERABAD Where,

 A_2 = Peak area of pipernoyl butoxide (PBO) in the sample solution

 A_4 = Peak area of internal standard in the sample solution

 A_3 = Peak area of internal standard in the standard solution

 A_1 = Peak area of pipernoyl butoxide (PBO) in the standard solution M_1 = Mass in 'g' pipernoyl butoxide (PBO) in the standard solution

 M_2 = Mass in 'g' of sample taken for test

P = Percent purity of pipernoyl butoxide (PBO) standard

Diperpeul butavide content in percent 0/ by mass -	$\%$ A.I in premix x Weight of premix (W_6
Pipernoyl butoxide content in aerosol, % by mass =	
	Weight of Aerosol (W ₅)

SI. No.	Name of test		Result	Unit	Method of Analysis
1.	Active ingredient			%	
2.					
Remark / Re	eference :				
		Name			
Analyzed by		Dated signature			
Checked by		Name			
		Dated signature			

Name of the Laboratory: Pesticide Formulation & Residue Analytical Centre, PMD, NIPHM, Hyderabad							
Document No.	:	FC-PF-232		Document Name	:	Flow chart for analysis of D-trans allethrin a piperony butoxide content, % by mass	
Revision No.	:	: 00 Issue Date : 05.10.2012			05.10.2012		
Revision Date	:	05.10.2014		Next Revision Date	:	05.10.2016	
Prepared By			Checked By		Approved & Issued By		
Ms. M. Jaya Devi				Mr. C.V. Rao			Dr. Abhay Ekbote
(Deputy Techn	ical N	Ianager)	(Technical Manager)		(Di	(Director PM & Quality Manager)	